当前位置: 太阳娱乐娱城官网8722» 人才队伍» 研究员

周焕斌

      

image.png

周焕斌,男,籍贯湖北武汉,中国农业科学院研究员、博士生导师。

2000年和2003年在华中农业大学园艺林学学院分别获蔬菜学学士和硕士学位,2007年在中国科学院遗传与发育生物学研究所获遗传学博士学位。2007至2015年分别在美国加州大学河滨分校、爱荷华州立大学从事博士后研究工作。2015年入职中国农科院植物保护研究所。2017年入选中国农科院“青年英才”A类,2019年入选国家高层次人才特殊支持计划青年项目,同年入选中国农科院“农科英才”领军人才B类。现任中国植物病理学会常务理事、副秘书长;中国作物学会分子育种分会委员;中国生物工程学会生物农业分会委员;BMC Plant Biology和Frontiers in Genome Editing杂志副主编;Journal of Integrative Agriculture、aBIOTECH和生物技术通报编委。

研究组承担国家重点研发计划专项、国家农业重大科技项目、国家农业生物育种重大项目等项目多项。主要从事抗性基因人工设计与基因编辑利用研究,涉及1)病原微生物基因编辑技术开发,阐述病原菌致病机理以及创制高活性工程菌株;2)作物基因编辑技术开发和抗性基因人工设计,培育基因编辑抗病、耐除草剂水稻新材料和新品种,为实现我国农业绿色植保和可持续发展提供重要支撑。目前已获得国家发明专利授权9项,在Cell Host & Microbe, Mol Plant, Nucleic Acids Res, Genome Biol, Plant Biotech J, Plant Commun, Plant Physiol, Plant J, PLoS Pathog等国内外重要学术期刊上发表论文40多篇,其中7篇为ESI高被引论文,总引用率达3700多次。

联系方式:zhouhuanbin@caas.cn

个人网址:https://www.researchgate.net/profile/Huanbin_Zhou


回国后发表论文(#通讯作者)

1. M Wang, S Li, H Li, C Song, W Xie, S Zuo, X Zhou, C Zhou#, Z Ji# & H Zhou#. Genome editing of a dominant resistance gene for broad-spectrum resistance to bacterial diseases in rice without growth penalty.  Plant Biotechnol. J . 2023, DOI: 10.1111/pbi.14233.

2. G Gosavi, D Jade, S Ponnambalam, MA Harrison & H Zhou#. In-silico prediction, characterization, molecular docking and dynamic simulation studies for screening potential fungicides against leaf rust of  Triticum aestivum .  J Biomol Struct Dyn . 2023, 5:1-13.

3. X Wu, B Ren, L Liu, S Qiu, X Li, P Li, F Yan, H Lin, X Zhou, D Zhang# & H Zhou#. denine base editor incorporating the N-methylpurine DNA glycosylase MPGv3 enables efficient A-to-K base editing in rice.  Plant Commun . 2023:100668.

4. B Ren, Y Kuang, Z Xu, X Wu, D Zhang, F Yan, X Li, X Zhou, G Wang# & H Zhou#. Three novel alleles of  OsGS1 developed by base-editing-mediated artificial evolution confer glufosinate tolerance in rice.  Crop J . 2023, 11(2): 661-665.

5. F Yan, M Yu, M Wang, H Zhou#. High-throughput base-editing-mediated artificial evolution streamlines trait gene identification in rice.  Methods Mol Biol . 2023, 2606: 191-202.

6. F Yan, J Wang, S Zhang, Z Lu, S Li, Z Ji, C Song, G Chen, J Xu, J Feng, X Zhou & H Zhou#. CRISPR/FnCas12a-mediated efficient multiplex and iterative genome editing in bacterial plant pathogens without donor DNA templates.  PLoS Pathog . 2023, 19(1): e1010961.

7. M Wang, F Yan & H Zhou#. Protocol for targeted modification of the rice genome using base editing.  STAR Protoc . 2022, 3(4): 101865.

8. S Li#, C Wang, C You, X Zhou & H Zhou#. T-LOC: A comprehensive tool to localize and characterize the T-DNA integration sites.  Plant Physiol.  2022, 190(3):1628-1639.

Commented by G Alex Mason. T-LOCked in: Identifying T-DNA insertions in plant genomes.  Plant Physiol . 2022, 190(3):1547-1549.

9. J Hu, M Liu, A Zhang, Y Dai, W Chen, F Chen, W Wang, D Sheng, M J Telebanco-Yanoria, B Ren, H Zhang, H Zhou, B Zhou, P Wang & Z Zhang#. Co-evolved ascorbate oxidases of plant and the blast fungus orchestrate host apoplast redox state to modulate rice immunity.  Mol Plant.  2022, 15(8): 1347-1366.

10. S Li#, L Liu, W Sun, X Zhou & H Zhou#. A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants.  Genome Biol . 2022, 23: 51.

11. K Wang*, H Zhou*& Q Qian#. The rice codebook: from reading to editing. Mol. Plant . 2022, 15: 569-572.

12. G Gosavi, B Ren, X Li, X Zhou, C Spetz# & H Zhou#. The new era of creating herbicide-tolerant crops through genome editing.  ACS Agr Sci. & Technol . 2022, 2: 184-191.

13. Y K Bosken, R Ai, E Hilario, R K. Ghosh,M F Dunn, S Kan, D Niks, H Zhou, W Ma, L J Mueller, L Fan# & C A Chang#. Discovery of antimicrobial agent targeting tryptophan synthase.  Protein Sci. 2022, 31(2):432-442.

14. G Ma, Y Kuang, Z Lu, X Li, Z Xu, B Ren, X Zhou & H Zhou#. CRISPR/Sc++ system-mediated genome modification in rice.  J Integr Plant Biol . 2021, 63: 1606-610.

15. H Zhou#, Y Zhang, L Xia & S Toki. Editorial: Targeted genome editing in crops.  Front. Genome Ed. 2021, 3: 757916.

16. C Yang, R Liu, J Pang, B Ren, H Zhou, G Wang, E Wang & Jun Liu#. Poaceae-specific, cell wall-derived oligosaccharides activate plant immunity via  OsCERK1 during  Magnaporthe oryzae infection in rice.  Nat. Commun.  2021, 12: 2178.

17. D Yan, B Ren, L Liu, F Yan, S Li, G Wang, W Sun, X Zhou & H Zhou#. High-efficiency and multiplex adenine base editing in plants using new TadA variants.  Mol. Plant. 2021, 14(5): 722-731. (ESI高被引论文)

18. Y Cao, H Zhou, X Zhou & F Li#, Conferring resistance to plant RNA viruses with the CRISPR/CasRx system.  Virol. Sin . 2021, 36(4): 814-817.

19. Z Xu, Y Kuang, B Ren, D Yan, F Yan, C Spetz, W Sun, G Wang, X Zhou# & H Zhou#. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition.  Genome Biol.  2021, 22: 6.

20. L Liu, Y Kuang, F Yan, S Li, B Ren, G Gosavi, C Spetz, X Li, X Wang, X Zhou & H Zhou#. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of  OsTubA2 .  Plant Biotech. J.  2021, 19(1): 5-7.

21. Y Cao, H Zhou, X Zhou#, F Li#. Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity.  Front. Microbiol. 2020, 11: 593700.

22. G Gosavi, F Yan, B Ren, Y Kuang, D Yan, X Zhou & H Zhou#. Applications of CRISPR technology in studying plant-pathogen interactions: overview and perspective.  Phytopathol. Res. 2020, 2: 21.

23. M Wang, Z Xu, G Gosavi, B Ren, Y Cao, Y Kuang, C Zhou, C Spetz, F Yan, X Zhou & H Zhou#. Targeted base editing in rice with CRISPR/ScCas9 system.  Plant Biotech. J. 2020, 18(8): 1645-1647.

24. Y Kuang, S Li, B Ren, F Yan, C Spetz, X Li, X Zhou & H Zhou#. Base-editing-mediated artificial evolution of  OsALS1 in planta to develop novel herbicide-tolerant rice germplasms.  Mol. Plant  2020, 13(4): 565-572. (ESI高被引论文)

25. X Yang, H Zhou and X Zhou#. Rock paper scissors: CRISPR/Cas9-mediated interference with geminiviruses in plants.  Sci. China. Life Sci.  2019, 62(10): 1389-1391.

26. L Zhang, Q Han, J Xiong, T Zheng, J Han, H Zhou, H Lin, Y Yin & D Zhang#. Sumoylation of BRI1-EMS-SUPPRESSOR 1 (BES1) by the SUMO E3 ligase SIZ1 negatively regulates brassinosteroids signaling in  Arabidopsis thaliana. Plant & Cell Physiol.  2019, 60(10): 2282-2292.

27. B Ren, L Liu, S Li, Y Kuang, J Wang, D Zhang, X Zhou, H Lin# & H Zhou#. Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice.  Mol. Plant  2019, 12(7): 1015-1026. (ESI高被引论文)

28. J Long, C Song, F Yan, J Zhou, H Zhou# & B Yang#. Non-TAL effectors from  Xanthomonas oryzae pv.  oryzae suppress peptidoglycan-triggered MAPK activation in rice.  Front. Plant Sci.  2018, 9: 1857.

29. F Yan, Y Kuang, B Ren, J Wang, D Zhang, H Lin, B Yang, X Zhou & H Zhou#. Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice.  Mol. Plant  2018, 11(4): 631-634. (ESI高被引论文)

30. B Ren, F Yan, Y Kuang, N Li, D Zhang, X Zhou, H Lin# & H Zhou#. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant.  Mol. Plant 2018, 11(4): 623-626. (ESI高被引论文)

31. B Ren, F Yan, Y Kuang, N Li, D Zhang, H Lin# & H Zhou#. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice.  Sci. China. Life Sci.  2017, 60(5): 516-519. (第二届中国科协优秀科技论文遴选计划入选论文)

回国前发表论文(2015之前)

1. H Zhou, B Liu, DP Weeks, MH Spalding & B Yang. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice.  Nucleic Acids Res  . 2014, 42(17): 10903-10914. (ESI高被引论文)

2. W Jian, H Zhou, H Bi, M Fromm, B Yang & DP Weeks. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in  Arabidopsis , tobacco, sorghum and rice.  Nucleic Acids Res  .  2013, 41(20): e188. (ESI高被引论文)

3. S Jiang, J Yao, K Ma, H Zhou, J Song, S He & W Ma. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors.  PLoS Pathog  .  2013, 9(10): e1003715.

4. H Zhou, J Lin, A Johnson, RL Morgan, W Zhong & W Ma. Pseudomonas syringae  type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean.  Cell Host & Microbe  2011, 9(3): 177-186.

Commented by Andrew Bent. Pathogens Drop the Hint: Don't Forget Phytoalexin Pathways.  Cell Host & Microbe  .  2011, 9(3):169-70.


Baidu
sogou